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Abstract

Runge-Kutta schemes have been used as a method of solving the Euler
I

equations exterior to an airfoil. In the past this has been coupled with

!

central differences and an artificial viscosity in space. In this study we
I

couple the Runge-Kutta tlme-stepplng scheme with an upwlnded space approxlma-

tlon based on flux-vector splitting. Several acc:l_.ratlon techniques are also

considered including a local time step, residual smoothing and multlgrld, i
L
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Introduction

_. We wish to solve the steady-state meltidtmensional Euler equations with a

method that is suitable for a large range of Math numbers. A_ the same time

we wish the method to be accurate, robust and capture shocks without excessivet

smearing. We also wish to reach the steady state rapidly. To achieve these

goals we combine the Runge-Kutta scheme introduced in [1] with the flux-vector
!

• splitting introduced in [2].

Consider the two-dimensional system i

Wt + f + gy O. (l) _.X

I

]
t

We advance the numerical solution in ti_ using a N stage algorithm

J
t -J

• (0) n
W I W

:
t

_ f(k-l) + D g(k-l)j (2)w(k).w(o) %_t[Dx y .,
:

i

n+l (N)
W " W

k'

i
_: where Dx f and Dy g are difference approximations to the flux derivatives•

To check the stability we freeze coefficients and Fourier transform. The
i

'_i ampllflcation matrix of (2) is then i

I
t

i

1
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2 N
G = I + 81 z + B2 z + "'" + 8N z

L

= { (3)
I

|

8k = Bk-l aN-k+l

i

where z is the Fourier transform of _t[D f + D gJ. When central
x y i

{

differences are used then z lies on the imaginary axis. With upwind I

differences z lies on some curve in the negative real half of the complex

plane, i
!

Experience has shown that one should usually choose the parameters so that I
i

the time step is maximal. For central differences this implies that {
}

" cAt/_x ¢ N - I (4)

!

where C depends on [Z{max. With upwind schemes no general rules have been ._
%

developed th,ts far for optimal parameters. At present the parameters have }

been chosen by experimentation. One possibility is presented in the result {I

section. {

To appreciate the connection between central differences and flux vector !

splitting we consider a one-dlmenslonal example. Assume that we wish to {
{

i_,, compute a numerical flux at the cell interface I + I/2 . Quadratically {
|

interpolating the cell averages in zones i-l, i, i+l yields a left-slde
/ !

estimate of the state variables

l
k

J

{
I
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ORIGINALPACE _,
OF POOR QUALITY '_

, L I -- 1 -- --

• wi+I/2--_i + : lWi+l- Wi-ll + "['2[Wi+l- 2wi + wi-I)" (5) :
(

: Interpolating tile cell averages in zones i, i+l, i+2 yields the right-sided i

estimate

R -- I -- -- I -- --

wi+i/2= wi+ I -: [wi+ 2 - wi) +-_-_-[wi+ 2 - 2Wl+ I + wi). (6)

The difference between these values is 0[(Ax)31. We now introduce an upwind

L ;

bias in the numerical flux by using from the components of wi+ 1/2 only those !

R

charactertstI: combinations that are convec.ed forward and from Wi+l/2 those

eonvected backward. In the approximation of flux splitting this becomes 1
!

t
i

|

1/2, wi+I/21 -- (f)i+I/2 + (f-) +I/2 " (7) !I
t

- i

i
i

This can be rewritten as

!
L R I L R I R L

flwt+l/2, Wt+l/2) =: /it+l/2+ fi+l/2) -: Qt+l/2tWi+l/2- Wi+l/2) , (8)

with

df + df- i

Q "'_'--- d--w'-; i

I
: i

z ).
Qi+ 1/2 is a Roe-type [3] average of Q over the interval {wk+ l/2 , wi+ l/2

i

From (8) we see that the upwind-biased flux deviates from the average I
[

-_" flux, used for central differencing, by a third-order term. This leads to a i
, !

. fourth-order viscosity with a matrix-valued coefficient. This viscosity
,_ _

!
r

- I
4

i
}

I
i i

D ................
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prevents the checkerboard instability similar to the fourth-order _,iscosity
t

: introduced in [1].

Equations (5) and (6) are modified before their actual use. The first

order term is multiplied by a switch described in [4] while the second-order

: i

term is multiplled by its square. When wi+l - wi is large compared with i

wi - wi_ I and wi+ 2 - Wi+l, as in a shock profile, then the limiting yields i

R _ L = -- - w-"i. (9) :wi+I/2 wi+I/2 wi+1 i!
f

Therefore, the viscosity term in (8) now leads locally to a second-order
i

viscosity which guarantees a monotone profile. This is similar to the second- iJ

order artificial viscosity introduced in if] and discussed in more detail In I

is]. J

Limiting the hlgh-order terms combined with upwind differencing is a

robust way of preventing numerical oscillations near discontinuities. To 1 !

i
achieve the same effect the viscosity of [1] would have to be raised to the

level of the spectral radius of Q leading to excessive smearing. In _

practice using the code of [1] the opposite approach is used. The coefficient

of viscosity is adjusted, by trial and error, so that the shock profiles are i
!

sharp and spurious entropy production in the smooth flow is minimized. For

smooth flows one can achieve viscosity levels that are smaller than that of

i the upwind scheme with the Umlter. For vlolent flows the artificial [
"# }

: viscosity io much too large. In any case the coefficient of viscosity used in [
/

- . |

-_, [I] is very problem-dependent while the present code has no adjustable
n

parameters that need to be played with.= !

I

I
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Flux splitting In an arbitrary multidimensional body-f!tted coordinate

system can be reduced to a one-dlmenslonal problem with reference direction

normal to the cell face where fluxes are computed. The resultant code Is a

full two-dimensional code and does not use time splitting to combine the

coordinate directions. In all the interpolations we have ignored the

geometric variation of the cells as was done in [1]. This can lead to errors

for high angles of attack, especially near the trailing edge where cell shape

and size vary strongly.

Having discussed the spatial discretization we now introduce several

techniques to accelerate the convergence to a steady state. The first

I technique is to use a local time This the time
step. improves running by an

order of magnitude due to the small cells near the airfoil. The second

technique is to use residual smoothing after each stage of the Runge-Kutta

method. This was first introduced in [6] for the Lax-Wendroff scheme. If one

uses central differencing then the scheme is unconditionally stable when the

smoothing is done after every even stage. Using an upwind scheme the

smoothing should be done after each stage of the algorithm. Even though the

resultant scheme is unconditionally stable it is not efficient to use time

steps that are too large. Time steps about three times as large as those of

._ the explicit scheme seem to be optimal. Since the residual smoothing adds

only about 10g to the running time per time step the use of the residual

smoothing is advantageous.

A third acceleration technique is to use a multigrid method. Jameson [71

_'_ has proposed using the Runge-Kutta schew coupled with central differences as

a smoothing algorithm for am, ltlgrid scheme. The paraMters are now

%
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i
1 chosen to damp the high frequencies rather than achieving a maximal time step. t

We use the same technique with upwind differencing in the Runge-Kutta scheme

instead of central differences with an artificial viscosity. In the central-

difference version [7] the artificial viscosity is increased compared with the

standard Runge-Kutta scheme [I]. In addition the multigrid central-difference

code seems to rely on the enthalpy damping in order to achieve rapid

convergence to the steady-state. With the upwind code there is no longer an

artificial viscosity that can be tuned to damp the high modes. Furthermore,

the steady-state total enthalpy is not preserved by the flux-vector-splltting

scheme [2]. Hence, the enthalpy damping introduced in [I] and [5] cannot be

used. Nevertheless the multigrld scheme does work with the upwlnd-blased

scheme. Thus, the viscosity that is implicit in the scheme seems to be

sufficient to compensate for both the artificial viscosity and the enthalpy

damping of the central-dlfference scheme. However, the convergence rate of !

i !

the upwind scheme is slower than that of the central-dlfference scheme, mainly

because of the enthalpy damping in the latter.

• "i

t

bau/ts t

i] The upwind biased version of the code has been run on several different
J

cases. The first case is a NACA-O012 airfoil with M® - 0.8, and a = 1.25°.

The mesh 18 an 0-mesh generated by a sheared parabolic transformation. We use I

i

!

/ a four stage Runge-Kutta scheme with aI = .17, a2 = .273, a3 : .5 and i
!

= = .9_/8 W
a4 I. The residual smoothing is applied after each stage with 8x

and By = .6Bx (I is the local Courant number) with I = 3. Using a 64 x 16
I

| &

i
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q

mesh the residual is reduced by 4 orders of magnitude after 600 steps. The

.: Cp curve is similar to that achieved by the central-difference code [l]

except that the shock profile is now sharper with one point in the middle of

the shock along the airfoil. We have also run several supersonic flows about

: the NACA-0012. The upwind version of the code converges for a larger range of

Math numbers than does the central difference version.

Because of the flux splitting and upwind logic entering the execution the

upwind code is about two times slower per time step than the central-

difference version. A further slowdown is caused by the Runge-Kutta method

which seems to favor the spectral distribution of central differences and

which has not yet been optimized for upwind differences. Hence, the time step

is about half of that for central differences. In addition, the enthalpy

damping described in [I] and [5] cannot be used. Thus, the present version of

the upwind scheme is about 5 times slower In reaching the steady state than

the central-dlfference code of [l].

The multlgrld version of the code has also been run using a four-stage

Runge-Kutta. The original parameters were reasonable but a better set is "_

aI = .15, a2 - .3275, a3 = .57 and a4 = I. We have a18o used a 81x-stage

formula with aI - .073, a2 - .138, a3 = °22, a4 = .334, a5 ffi.5 and a6 - I.

On a 64 x 16 mesh the multigrld version requires fewer iterations to converge.

However, accounting for the extra work of the mltlgrld the two codes have

about the same convergence rate per work unit, Nevertheless, if a coarser

mesh is used to initialize the finer mesh, then the total number of supersonic

points Is predicted within 60 iterations on the fine mesh. Moreover, it is
t

4 expected that for finer grids the mltlgrld rill be more efficient. The

@
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q

central-dlfference multigrld code is the fastest code. However, this relies

; heavily on the enthalpy daaping. Thus, for the Navler-Stokes equations It

cannot always be used. In this case the upwind multigrid so.hem will be the

most efficient.

l

!

!

r

!

I

/ !

I
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